La somme des chiffres des nombres premiers est bien répartie

nombres+primairesIl y a en moyenne autant de nombres premiers dont la somme des chiffres décimaux est paire que de nombres premiers pour lesquels elle est impaire. Cette hypothèse formulée en 1968 vient d’être démontrée par des chercheurs de l’Institut de mathématiques de Luminy (CNRS/Université de la Méditerranée). La démonstration est publiée dans la revue spécialisée Annals of Mathematics1.

Nombres premiers

Un nombre premier est un nombre entier supérieur ou égal à 2 dont les seuls diviseurs entiers sont 1 et lui-même. Par exemple, 2, 3, 5, 7, 11,…, 1789,… sont des nombres premiers, alors que 9, divisible par 3, n’est pas un nombre premier.

De nombreux problèmes arithmétiques concernent les nombres premiers et la plupart d’entre eux sont sans réponse, parfois depuis plusieurs siècles. Par exemple, on sait depuis Euclide que la suite des nombres premiers est infinie, mais on ne sait toujours pas s’il existe une infinité de nombres premiers p tels que p+2 est aussi un nombre premier (problème des nombres premiers jumeaux). De même on ne sait pas s’il existe une infinité de nombres premiers dont la représentation décimale n’utilise pas le chiffre 7.

Deux chercheurs de l’Institut de mathématiques de Luminy viennent de faire une percée importante sur une conjecture formulée en 1968 par le mathématicien russe Alexandre Gelfond concernant la somme des chiffres des nombres premiers. Ils ont démontré en particulier qu’il y a en moyenne autant de nombres premiers dont la somme des chiffres décimaux est paire que de nombres premiers pour lesquels elle est impaire.

Applications importantes

Les méthodes mises en oeuvre pour obtenir ce résultat, issues de la combinatoire, de la théorie analytique des nombres et de l’analyse harmonique, sont très novatrices et devraient ouvrir la voie à la résolution d’autres questions difficiles concernant la représentation de certaines suites de nombres entiers.

En complément de leur intérêt théorique, ces questions sont directement liées à la construction de suites de nombres pseudo-aléatoires et ont des applications importantes en simulation numérique et en cryptographie2.

Notes et références

  1. Sur un problème de Gelfond : la somme des chiffres des nombres premiers. Christian Mauduit et Joël Rivat. Annals of Mathematics []
  2. Source : presse CNRS []

Commentaires Clos.

Note aux utilisateurs concernant la publication d'informations médicales :
Publiez uniquement des informations que vous jugez véridiques à la lumière de vos connaissances.
Si les données médicales diffusées ne proviennent pas de votre expérience personnelle, vous devez indiquer les sources (références, liens, etc.).